A Multigrid Method Enhanced by Krylov Subspace Iteration for Discrete Helmholtz Equations
نویسندگان
چکیده
منابع مشابه
A Multigrid Method Enhanced by Krylov Subspace Iteration for Discrete Helmholtz Equations
Standard multigrid algorithms have proven ineffective for the solution of discretizations of Helmholtz equations. In this work we modify the standard algorithm by adding GMRES iterations at coarse levels and as an outer iteration. We demonstrate the algorithm’s effectiveness through theoretical analysis of a model problem and experimental results. In particular, we show that the combined use of...
متن کاملMultigrid and Krylov Subspace Methods for the Discrete Stokes Equations
Discretization of the Stokes equations produces a symmetric indefinite system of linear equations. For stable discretizatiom a variety of numerical methods have been proposed that have rates of convergence independent of the mesh size used in the dkretization. In this paper we compare the performance of four such methods, namely variants of the Uzawa, preconditioned conjugate gradient, precondi...
متن کاملMultigrid and Krylov Subspace Methods for Transport Equations: Absorption Case
SUMMARY In this paper we look at Krylov subspace methods for solving the transport equations in a slab geometry. The spatial discretization scheme used is a nite element method called Modiied Linear Discontinuous scheme (MLD). We investigate the convergence rates for a number of Krylov subspace methods for this problem and compare with the results of a spatial multigrid scheme.
متن کاملKrylov subspace iteration
In the simulation of continuous events, such as the ow of a uid through a pipe, or the ow of air around an aircraft, one usually imposes a grid over the area of interest and one restricts oneself to the computation of relevant parameters, for instance the pressure or the velocity of the ow or the temperature, in the gridpoints. Physical laws lead to approximate relations between these parameter...
متن کاملKrylov Subspace Acceleration Method for Nonlinear Multigrid Schemes
In this paper we present a Krylov acceleration technique for nonlinear PDEs. As a `precon-ditioner' we use nonlinear multigrid schemes, like FAS 1]. The beneets of the combination of nonlinear multigrid and the new proposed accelerator is shown for diicult nonlinear ellip-tic scalar problems, like the Bratu problem and for systems of nonlinear equations, like the Navier-Stokes equations.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Scientific Computing
سال: 2001
ISSN: 1064-8275,1095-7197
DOI: 10.1137/s1064827501357190